

Fiches de cours KeepSchool

Angles et triangles

1. Propriétés

La somme des mesures des angles d'un triangle est égale à 180°.

Un triangle isocèle a deux angles égaux.

Un triangle équilatéral a trois angles égaux qui font 60° chacun. (3 x 60° = 180°)

Un triangle rectangle a un angle de 90°.

Un triangle rectangle et isocèle a un angle de 90° et deux angles de 45° chacun. (90° + 2 x 45° = 180°).

2. Applications

Cas d'un triangle quelconque

Soit ABC un triangle quelconque.

$$A_{B}^{\wedge}C = 60^{\circ}$$
 et $A_{C}^{\wedge}B = 40^{\circ}$. Quelle est la mesure de l'angle $B_{A}^{\wedge}C$?

$$A_{B}^{\hat{}}C + A_{C}^{\hat{}}B = 60^{\circ} + 40^{\circ} = 100^{\circ}$$

$$B_A^{\wedge} C = 180^{\circ} - (A_B^{\wedge} C + A_C^{\wedge} B) = 180^{\circ} - 100^{\circ} = 80^{\circ}$$

L'angle B $^{^{\wedge}}_{A}$ C fait donc 80°.

Cas d'un triangle isocèle

Soit ABC un triangle isocèle en A.

$${\sf B}_A^{\,\,{}^{\,}}{\sf C}$$
 = 70°. Quelles sont les mesures des angles ${\sf A}_B^{\,\,{}^{\,}}{\sf C}$ et ${\sf A}_C^{\,\,{}^{\,}}{\sf B}$?

Dans un triangle, la somme des mesures des angles est égale à 180°. Dans le triangle ABC : B $_A^{^{\wedge}}$ C + A $_B^{^{\wedge}}$ C + A $_C^{^{\wedge}}$ B = 180°.

$$A_{R}^{\wedge}C + A_{C}^{\wedge}B = 180^{\circ} - 70^{\circ} = 110^{\circ}$$

ABC est un triangle isocèle en A, donc A $_B^{^{\wedge}}$ C = A $_C^{^{\wedge}}$ B.

Les angles A $^{^{\wedge}}_{B}$ C et A $^{^{\wedge}}_{C}$ B font donc 55° chacun.

Fiches de cours KeepSchool

Cas d'un triangle rectangle

Soit ABC un triangle rectangle en A.

$${\rm A}_B^{\,{}^{\wedge}}\,{\rm C}$$
 = 40°. Quelle est la mesure de l'angle ${\rm A}_C^{\,{}^{\wedge}}\,{\rm B}$?

Dans un triangle, la somme des mesures des angles est égale à 180°. Dans le triangle ABC : A $_B^{^{\wedge}}$ C + A $_C^{^{\wedge}}$ B + C $_A^{^{\wedge}}$ B = 180°

C $^{^{\wedge}}_{A}$ B = 90° puisque le triangle ABC est un triangle rectangle en A.

$$C_{A}^{\wedge}B + A_{B}^{\wedge}C = 90^{\circ} + 40^{\circ} = 130^{\circ}$$

$$A_C^{\wedge}B = 180^{\circ} - (C_A^{\wedge}B + A_B^{\wedge}C) = 180^{\circ} - 130^{\circ} = 50^{\circ}$$

L'angle A $\stackrel{^{\wedge}}{C}$ B fait donc 50°.